Exploiting the versatility of nanostructured transistors for biosensing applications

Bergoi Ibarlucea

Institute for Materials Science and Max Bergmann Center for Biomaterials, cfaed.

Rapid demographic changes demand improved biomedical diagnostic technologies with rapidness, low cost and high-throughput, without sacrificing the sensitivity. Considering the miniature size, scalability of fabrication, and ease of chemical modification, nanoscale ion-sensitive field-effect transistors packaged in small chips and integrated with additional circuits and lab-on-a-chip structures are ideal candidates to fulfill the task.

In this talk, I will give an overview of the advances that we have achieved in this direction, showing a variety of technologies and solutions for different applications. We have demonstrated the validity of these transistors for microorganism monitoring activity and screening of antibody effects^[1]. We have also shown high sensitivity in disease diagnostics^[2], giving steps toward multiplexing of a variety of pathogens^[3]. Additionally, I will discuss the integration of microfluidics offering compartmentalization approach^[4] and high-density sensor areas in CMOS circuits for molecule mapping and the use of alternative measurement methodologies^[5,6]. Finally, the transfer possibilities to flexible supports will be shown, envisioning their use in wearable devices^[2,7].

- 1. B. Ibarlucea et al., Lab on a Chip, 2017, 17(24),4283-4293
- 2. D. Karnaushenko, B. Ibarlucea et al., Adv. Health. Mater., 2015, 4(10), 1517-1525
- 3. B. Ibarlucea et al., Proc. 17th IMCS, 2018, 182-183. DOI 10.5162/IMCS2018/BS4.3B
- 4. J. Schütt, B. Ibarlucea et al., Nano Lett. 2016, 16 (8), 4991–5000.
- 5. B. Ibarlucea et al., Appl. Sci., 2018, 8(6), 950
- 6. B. Ibarlucea et al., Nano Research, **2018**, 11(2), 1057–1068
- 7. P. Zhang, S. Yang, R. Pineda-Gómez, B. Ibarlucea et al., Small, 2019, DOI:https://doi.org/10.1002/smll.201901265.